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Radial-pulse propagation and impedance characteristjcs of optically shuttered
channel intensifier tubes

J. L. Detch, Jr.
EG&G, Inc., Santa Barbara Operations
130 Robin Hill Road, Goleta, California 93017
and
B. W. Noel
Los Alamos National Laboratory
MS 678, P. O. Box 1663, Los Alamos, New Mexico 87545

Abstract

Electrically gated proximity-focused channel intensifier tubes are often used as optical
shutters, Optimum nanosecond shuttering requires both understanding the electrical pulse
propagation across the device structure and proper impedance matching. A
distributed-transmission-line model 1is developed that describes analytically the voltage-
and current-wave propagation characteristics as functions of time for any point on the
surface. The optical gain's spatial uniforwity and shutter-open times are shown to depend
on the electrical pulse width and amplitude, and on the applied bias. The driving-point
impedance ig derived from the model and is expressed as a functisn of an infinite sum of
terms in the complex frequency. The synthesis in terms of lumped-constant network elements
is realized 1in first- and second-Foster equivalent circuits, Experimental impedance data
are compared with the model's predictions and deviations from the ideal model are
discussed.

Introduction

The basic active components of proximity~-focused channel intensifier tubes*” include a
glass faceplate on which a photocathode is formed, followed by a microchannel plate (a
fused bundle of 12.5-um~-diam hollow glass tubes, or microcapillaries) and an output
fiber-optic window un which a phosphor is formed. Biasing electrical connections are made
to the photocathode, the input and output ends of the microchannel plate (MCP), and the
phosphor anode. Photoelectrons emitted from the photocathode that enter the
microcapillaries are accelerated by the applied potential, strike the walls, and are
multiplied by secondary emission, producing an electron cascade, Electronic gains from a
few hundred to a faw thousand may be obtained in this manner. The electron gain of the MCP
varies as a function of the voltage applied across it. Upon exiting the MCP «capillaries,
the electrons are further accelcrated into the phosphor, thereby producing the intensified
image. The intensifier may be shuttered off by operating the MCP input at reverse bias
relative to the photocathode 80 that photoelectrons cannot reach the MCP input. The
intensifier can then be gated on by applying a forward-biasing pulse. We refer to the set
consisting of the photocathode, the MCP input, and the gap between them as the MCP gate.

Experimental evaluation of gated intensiftier tubes has revealed several interesting
phenomena, Firet, when a fast turn-un pulse is applied to the MCP gate, the gain of the
intensifier progresses radially inward at a nonlinear rate. Second, applied potential
differences that are sufficient to completely turn on the intensifier in the esteady state
may only partially turn it on in the pulaed mode. Under this condition, the region having
optical gain progresses radially inward, but may not reach the center of the intensifier
before pulse extinction occurs. Third, the turn-on characteristic generally progresses
radially inward, followed some time later by a turn-off characteristic that prugresses
radially inward in a time that may significantly exceed the FWHM of the driving pulse.
Fourthir the rate of turn-off (radius versus time) may not exhibit the same behavior as the
rate of turn-on,

A mathematicel model |is developed that describes all of these turn-on phcnomena. The
describing equations are put into a form that uses dimensionless parameters. This form
enables one to characterize and compate various intensifier configurations. We start with
a distributed resistive-capacitive model of the MCP gote and derive from it the describing

*This work was performed under the auspices of the U.8. Department of Energy. The EG&C
portion was supported by Department of Energy contract no. DE-ACOB-?6NVG)183 for the Los
Al amos National Laboratory.

**often called proximity-focused microchannel-plate image intenerifiers.
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differsntial equation, The differential equation is solved and matched to the boundary
conditions for a step-function input. A set of universal turn-on curves is generated for a
step~function input. The curves allow one to characterize any intensifier in terms of its
radius and a propagation constant that is determined by either the network's sheet
resistance and capacitance or the turn-on time.

The knowledge of the potential everywhere across the MCP gate as a function of radius
and time after initiation of the step-function input is used to develop the eguivalent
response to an impulse (delta-function) input, The MCP-gate response to an arbitrary
driving function is obtained from the impulse response by convolution,

Proper electrical impedance matching is required at the MCP gate in order to minimize
reflectad gating-pulse energy, to get the fastest risetime, and to have the best waveform
in fast-pulse applications. To accomplish impedance matching will require a suitable
equalizing circuit between the pulse source and the MCP gate, because the intensifier alone
is not a good impedance match. To design equalizing networks requires detailed knowledge
of the driving-point-impedance characteristics of the MCP gat~-. The model permits
calculating the driving-point impedance. The current across and through the MCP gate as a
function of radius and time is calculated from the potential. ‘The Laplace transforms of
the potential and current functions are calculated, The ratio of these two s-plane
functions yields an anlytical expression for the complex impedance of the MCP gate as a
function of radius and frequency. When the expression is evaluated at the perimeter
radius, one obtains the driving-point impedance.

The model shows excellent dgeneral agreement with the observed phenomena and is
consistent with the basic electrical behavior. At least one unexplained optical
characteristic has been observed, Under certain operating conditions, the turn-on radius
has been seen to propagate radially inward, reverse itself before reaching the center, or
complete tucn-on, and then return radially outward. The R-C model chosen for this study
produces only radially inward-propaguting solutions in _terms of integer-order Bessel
functions. The L-C model of a radial transmission line* gives both radially iaward- and
outward-propagating solutions in terms of Henkel functions, We believe that a combined
R-C-L MCP-gate model would yleld a description of the observed outward-propagating
phenomenon. Unfortunately, the boundary conditions for such a model are difficult to
apply. Several electrical phenomena are 1ot now included in the R~-C model. For some
intensifiers, there is an unexplained decreasing equivalent series resistance (esr) at low
frequency. There 1is also a reries resonance partly caused by lead inductance and a
parallel resonance from parasitic capacitance. The rest of the series resonance and the
¢sr nay perhaps be partly explained with the proposed R-C-L model.

Distributed network model of the MIP gate

We assune that the MCP input and the photocathode are planar with circular symmgtry and
that the perimeters of these elements are driven simultaneously and symnetrically. As a
pulse propagates radially inward, we examine a symmetric ring, of radial thickness dr,
located at the radius r, The resistance between the inner and outer edges of the ring is

d 20 ar
p(r) r-'i';"l;' 4 ’ (1)

where p,. is the combined sheet resistance of the photocathode and MCP input, and op(r) {is
the res?ntance per unit width,

We then congider the elemental parallel-plate capacitor formed by the photocathode ring,

the adjacent ring on the MCP input surface, and the gap. We obtain a capacitance that g
proportional vo the radlus:

C(r)dr = 2»Cudr , (2)

*There appear to be some condicions wheru the latter assumption does not hold, but we do
not consider them here.
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vhere C, i8s the capacitance per unit area associated with the photocathode gap. Note that

this quantity may be experimentally estimated by =

by the photocathode surface area. Thus, C

-
/
capacitance between the photocathode and tﬂe HCB

asuring the gap capacitance and dividing
v, where C, i8 the (measurable) total
input leads.

With this model for the distributed resistance and distributrJd shunt c_pacitance of
the MCP~gate structure, we then examine . differential section of radial tranamission 1line

located between r and r + dr, as shown in Fig. 1.

is given by Ohm's law,

%% dr = p(r)idr, {3)

Similarly, the change in the current is given
by

LY
-

. - v
ar C(r) dr T (4

The differential radii may be removed from
Eqgs. (3) and (4) to provide

@
<

= - p(r)i (5)

arl
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and

LI N av
7T C(r) 3%

We then take the radial partial derivative of Eq.

and (6).

a2y - “q Cox av. _ 1 Po av
T A3t by p2 3’

which reduces to

3y lav _ 1 av
;:5 9% Kk 5T 0 (for 0 <r < a),

The change in voltage across the element
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Fig. 1. Differential diwtributed
tranamission line repregenting
two adjacent elemental rings on
the MCP gate structure.

(6)

(5) and combine the result with Egs. {(5)
Substituting the explicit forms of the distributed resistanrce and capacitance
from Eqs. (1) and (2), and their derivatives, gives

(7

(&)

where K = 1/0,C, i8 a propagation constant and a is the perimeter radium of the MCP gate.
The particular solution of Eq., (8) may be shown to be of tha form

2
v(r,t) = A J (ar) @Ko E,

(9)

vhere J, i the Beasel function of the cirst kind of order sero.
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Solution for a step-function input

Assume that we apply a step-function voltage of amplitude V_, to the perimeter of the MCP
gate at a time t » O and maintain the perimeter voltage v(n,g) = V, for all subsequent
t ime. Then Eg. 9 must be modified by an additive constant (or constants) determined from
the roots of

Jolaga) = 0. (10)

The general soluticn becomes

by ~Kait
v(r,t) = Vg + | AR Jglagr) & M. (11)
nr]

Examining the boundary condition at t = 0, when the potential elsewhere across the MCP gate
is assumed to be zero, we obtain the relationship

1 Apgdolapr) = - Vo (for 0 < r < a). (12)
n=1

The orthogonality relations for the J, Bessel functions are given by

0 for m # n
a
£ rdglagr) Jolapr) dr = . (13)
1

3 uzJi (aa,) for m = n

This relationship may be exploited to solve for the factors A, tc yleld the potential
across the MCP gate as a function of the radius and time,

®  «Kal Jalr
L - T T L _Jolfan) (14)
° a nel an Jl(aan)

For comparing gated MCP image intensifiers having different physical parameters, It has
been found convenlent to express Eq. (14) in a dimensionless (universal) form in terms of
the fractional radius, r/a, and a universal time parameter, T = Kt/a?, where t is the
laboratory time. Using these dimensionless parameters, Eq. (14) may be written as

v(r/a,T) . ., E e-sgw Jol(c/a)8p)

——————re (15)
Vo n=1 fnd1(Bp)

where B, = aa,, The reader should note the similarity between this solutjon and that for
radial heat flow in an infinite cylinder, as solved by Carslaw and Jaeger. The internal
rise of potential of the MCP gate following application of a stap function is shown in
Fig. 2 in terms of fractional potential va fractional radius for various values of the
universal time parameter. Note that an arbitrary bias may be added and the time required
for a given radius to reach a specified potential may be readily determined.
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Solution for a delta-functior input

Applying Duhamel's theorem allows one to differentiate Egs. (14) or (15) with respect to
time to produce the corresponding impulse reaponse for a delta function of potential
applied at t = 0. The response may be expregsed in terms of laboratory or dimensionless

time, respectively, by

T -KaZt Jg(r
Hir,e) = 28 ] a o fent Jolfin) (16)
a I'I'l Jl(aﬂn)
or
v -82T Jo((r/a)8
H(c/a,T) = 2 ] Bpe 85T Jollr/a)Bn) (17)
n-l Jl(an)

The dimensionless form, Eq. (17), of the impulse responne is shown in Fig. 3 for the same
values of the universal time parameter as shown in Fig. 2 for a ster-function input. Note
in particular that an impulse does not readily propagate acroes the MCP gate without

serious degradation.

'.oc p_— -
t____——o;.'o'V’ 200.0 ; ' o )
0.40
0.e0 1 180.0¢ 1
o
°
£0.60 8
z K - ..E 120.0
™ ~
< -
@ 0.40 1 < 800
- N
> z
3
0.20 i 400
0.00¢
00 L L 0000 020 040 080 080 10O
000 020 040 080 080 10O ' TR/A ' '
R/A
Fig. 3. Universal turn-on and turn-
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step-function input, showing fractional values of T between 0.002 and 0.05.
potential excursion vs fractional Vertical scale is normalized to unit
radiue for values of the time parameter. area under curve at T=0.

T, between 0.006 and 0.00.

Solution for an arbitrary input function

The propagating pctential across the MCP gate for an arbitrary input function X(t),. is

given by the causal convolution integral

vglr,t) -L‘x(w) Hir,t-1) dt. (18)

As an example of this operation, consider as an input function the caustl first-moment
exponential pulse given by



0 t <0
Xit) = ’ (19)
ate™Yt 0 < ¢t
vhere v is related to t /20 the FWHM of the driving pulse, by v = ?.44639/t1{z, and t"S
tea elat

constant, 9, is rela to the peak voltage excursion, Xp.x/ by the ionship
Integration of Eq. (18) with Eq. (19) as the 1npu§ function ylelds the

A= X axYe ~-.
result®”
2
< Jo(ray) o Kont KaZ- _ .
vitr,t) =288 5o o N & efon ”t[(l(uf‘-y)t'-l ). (20)
a . J;(aap) (Ka-v)

As an example of the behavior of Eq. (20), assume that a MCP gate has a radjus of
a= 0,5 cm, is biased off at -40 V, turns on when the potential across the gap exceeds
2.0, and is completely turned on in 1 ns after a step-function excursion to _+160_V is
applicd. This corresponds to a value of the propagation constant, K = 2.42 x 10~ cm“/ns.
Assune the Ariving pulse is8 of the form of Eq. (19), has a FWHM of ¢ 1™ 1l ns, and reaches
a peuk pectential of +160 V (200 V above the assumed -40-V bias). Thén Eq. (20) gives the
regulte shown in Fig. 4. Note the Initial inward-propagating rise in potential until the
entire intensifier is turned on, followed by an inwaird-propagating decrease in potential
that subsequently turns off the tube, The time between adjacent curves is 0.2 ns. The
times of croesing-zero potential and the corresponding radii for turn-on and turn-off are
shown in Fig. 5. Note in particular that the central portion of the inteneitier is turned
on for significantly greater time than is the perimeter, and that both of these times
exceed the FWHM of the driving pulse, :

l.w‘ -7 -
Vman 1600 - — —
0.80
] 120.0¢ 8 JURN - OFF
®
2
s 800 < 060 )
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3 £
2 40¢ & 040 .
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o
)
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3 ‘m0O0 0.20 1
vm"‘_‘o'd el R, S — )
000 020 040 0.60 080 100 0.00 1 — - A
R/A 000 o0.80 160 240 320 400
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Fig. 4. MCP gate voltage as func-
tion of time and position as
~alculated from Eq. (20) with Fig. 5. Turned-on and turned-off
parameters described in text. radii ve time for the same para-

meters used in Fig. 4 and describad
ip text.
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Calculation of the impedance

The voltage across the MCP gate as a function of radius and time is given by Bq._(ld).
By combining Eqgs. (1) and (3) and taking the radial pe~tial derivative of Eq. (l4i, we
obtain the current as a function of radius and time:

2vr 3v(r,t) dvrv, E e-xuﬁc Jy(rap)
) NPT

i(r,t) = .
(re 0 ar Pod el J;(aap)

(21)

The impedance of the radial transmission line as a function of radius is found by taking
the ratio of the Laplace-transformed voltage and current,

1,2 @ Joltag
vie,s _ Poel”  * 2T} P10} kad+s

LALNL Vg . (22)
I(r,s) dnr 4 Jdilraep) 1

Z(r,8) =

T1(8ap) geisa
n=1

The driviag-point impedance is obtained by evaluating Eq. (24) at the edge of the MCP gate,
where r = a. Thus,

-]
z(a,s) = F"_. :_1__ (23)
;o1

nel Btk

where k. = Kal w wg2p

Co-  The functional dependence on the radius will henceforth be
understood, and we wilf Urite

Z(s) only.

In this form, 2Z(s) appears to be difficult to interpret in terms of familiar

driving-point-impedance conceptas that involve lumped circuit elements. Consequently, we
search for ways to synthesize it in terms of such elements.

As a first step in the synthesis, it js straightforward to show that Z(s) im positive

real Dby, for example, Talbot's test.® 1t is thus synthesizavle in a number of ways. We
have chosen to develop firat- and second-Foater R-C syntheses.

Second-Foster synthesis

Equation (23) may be rearranged easily into the form

1
2(s) = ; (24)
) —
n=1 Pokn 1,°%0
v 8 T

and then the second-Foster R-C wynthesis follows by inspection (rig. 6). In the figure,

o
LI o
ok T T 2%
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R= —, (26)

Note that Cpyq < Cn, for all n, becavze 8,4y > B, for all n and 8; > 1. This means that
the first s-plane =zero of the circuit In Fig.” 6 is located at s = -1/RC; = -1/k,. For
frequencies from zero tc the vicinity of 1/21RC1, Eq. (23) becomes

o . == -
2(s) = o2 - = L 27 lc, lc, J-c, lc,,
1L J
n:l Kn R R %R R
because
- Fig. 6. Second-Foster synthesis
I 1 1 (28) of the driving-point impedance.
n=1 B% 4

The low-freguency (or firet-order) impedance is simply that of the low-frequency
capacitance, C,, as expecred for a correct model, By examining the second-Foster
equivalent circuit, we see that the low-frequency capacitance is that due to the infinite
number of lumped capacitors taken in parallel; i,e.,

- - ]
lep=ac, 1 —=—=¢ . (29)
n=] n=l Bn

For an 1B8-mm-diam ITT intensifier, the manufacturer specifies a nominal p. = 2000 2 per
square, We mezsure the low-frequency capacitance to be typically C, = 30.9 pF. Using
these values, the first zero is located at the break frequency £, = ?/2 RCy = 47 MHz. 1In
the region near this frequency, but well below the sccond break frequency, the circuit is
as shown in Fig, 7. For this second-order case, the impedance is then simply 1/5C1+R in
parallel with 1/'C:1' where

Cey = I Cp=Cp = Co1- L) » 0.308 (30)
n=1 8¢

and C, ) = 6.5 pF for our l8-mn~diam intensifiers. The foregoing procedure can be repeated
to as many elements as are required to cover the bandwidth of the 3Iriving circuit. At that
point, the lumped-constant circuit should be an excellent approximation o the ideal
iqtenlifier with respect to any imporvant properties of the driving source or matching
circuits.

The driving-point impedance of any circuit containing only lirear lumped elem¢nts can be
writter #3 the complex sum of an esr and a series reactancu. The resistance and reactance
are, in general, frequency-dependent, but obviously reduce to constant values at a fixed
frequency. For sufficiently low frequencies, the second FPoster equivalent cizcuit reduces
to a single capacitor of value C_. The series-equivalent coumponents for {rtermediate
frequencies can be found by 8omb1ninq the circuit elemerts in the usual way. For
sufficiently high frequency, s + =, all the capacitors become short circuits and the
equivalent network contains only all the equal-valued resistors in parallel. The infinite
paiallel combination thus reduces to zero resistance and the eqguivalent series resistance
approaches zero as s + =,
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Fig. 7. Second-order version of

the second-Foster synthesis.
Fig. 8. Properly terminated circuit
in frequency region where first-order
synthesis is valid.

Consicr . driving the «circuit with a pulse whose risetime corresponds to a frequency
below the first breakpoint. 1In this case, the first-order circuit is an appropriate
representation of the intensifier. It is possible to optimize the risetime and waveshape
very simply by using a stripline, between the driver and intensifier, whose characteristic
:m edance equals the ocutput resistance of the driving source. The appropriate stripline
\e&mination is shown in Fig 8.- It is also possible to impedance-match by, for example,
bridged-tee networks., For operation above the first breakpoint, more~complex matching
networks that include equalizers are needed. We note that gating nulses of the order of
l-ns FWHM require operation -hove ihe fourth breakpoint. We shall not discuss appropriate
matching circuits for such cases Lere because, as it turns out, parasitics and leakage that
are not accounted for in the present model preclude applying them directly,

Firgt-Foster synthesis

The exact form of the firs'-Foster synthesis cannot be carried out easily. The basic
equation for performing it is obtained by observing that, upon collecting terms over a
common derominator,

Z ﬁ (8+ky)

- i=1 n=) (31)
2 - nt} ,
s + k o0
n=1 n n (8+kp)
n=1
so that
o r] (8 + kp)
| n=]
i) = o= 5 ﬁ . (32)
- (8+k)
bt
The impedance has a pole at 8 = 0 ».d zeros at each 8 = - k The first zero is at = 47

MHz, as is expected, because this form of the impedance muag' have the same frequency
dependence as that which led to the second-Foster synthesis. The pole at zero can be
removed by writing Eq. (32) as

P A
2(s) = 2 [g v rm], ‘ (33)

so0 that, by the theory of residues,
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L (34)
z: rll (s+kp) |3 =0
=] n=
i=1 n#i
n=]l “n 1 4
3 = - - n
« © . (35)
f T - ;L o
izl n=1 " n=1fn
n#i
Thus
7 2 +°°p
2 (s) -C:; TS (s) . (36)

The pole at s = 0 comes from a capacitor of value C,. The numerator of F(s) is one order
lower than that of the denominator, so there is no temo—’able series resistor. This is
expected since, as we showed earlier, the value of the esr approaches zero as s =+ =,

It does not appear to be possible to evaluate F(s) exactly 1in the  orm of the
partial-fraction expansion needed to complete the synthesis. To do so requires lactoring a
denominator containing an infinite numbeir of terms in order to find the poles. Each of
these gives rise to a parallel R-C element pair, However, we do know the location of all
the zeros of Z(s) from Eq. (32). It can be shown that the poles and zeros of this function
alternate, so we may be able to make a useful approximation to the location of any pole by
gay, taking the logarithmic average of the two adjacent zeros. The final network will be
of the form shown in Fig. 9.

Approximate first-Foster synthesis

An approximete first-Foster R-C synthesis can be realized. The main advantage of it is
that one can calculate the exact values of the components. The disadvantage is that the
approximation improves only as the number of components increases, and the latter increase
causes a manifold increase in the algebraic complexity of the calculations.

The procedurc¢ used is to truncate the series i{n Eq. (32) after n terms and perform the

algebra required to put the truncated Z(s) into the proper form for first-Foster synthesis,
The results are illustrated in Fjg. 10. 1In this figure,

. fol ¢ F—
=4 " S

o

and
?ig. 9. PFirst-Foster synthesis of the
an N driving-point impedance.
Cp= = .1 & - (38)
Po 151 ky



Note that R, + 0 as n + =, as it should, based
on our earlier discussion. Similarly, C,

increases toward a constant value, namely Cg, nei ne2 ne3 - --=-- nej - -~
for n+ =,
The parallel components for n = 2 are R, Ry Ry R,
€ Ce Cs ¢
Po ki? + ky? T
R, = (39) r~
P -8_‘- (k + kz)z R' R’l R..

1 . _]-C. Cot ' Cai
and
Rye Cpe  Ry2 Co2
ki + k
C m 16w 1 2 (40) )

P pO klz + kzz '

The expression for the values of the parallel Ryi ]'Cm
elements is extremely complicated for n > 3. :r
For n = 3, the element values are
Ry = 0O (41)
37 127’ ' _Fig. 10. Approximate first-Foster

networks for the truncated driving-
point impedance.

cj""—g' (42)

Po (AB-9C) (/A2-33-A) +6(BZ-3AC)

R,y = i (43)
Pl * &~ ¢p(a/a’-3B - (A2 -38))
C, = A1 188/A% -3B (44)
pL " - e — - '

Po (AB-9C) (YA¢ -3B-A) + 6{B? -3AC)

. = "0 (AB-9C) (/AZ ~3B+A) -6(B? -3AC) (45)
P2 " 7w 6B(A’A -3B +(A -3B))

and
Cp ® 4 _____188/a7 -38B ' “6)

Po (AB-9¢) V24 =3B +A) ~-6(B2 -3AC)

where A = k; + kg + k3, B = klk + k + kyKq , and C = kjkp k3 For our Jintensifiers, we
calculate that 2Ry =253 a, B3 pFé = 41 B, “Cp) = 28.5 PP, Ro, = 10 @, and

= 34,6 pF. For this cuse, oach addltiongi capacitor il increased n value, as
egpected because tne capacitoru are in series. The three time constants are R Cyvl.4

Rg = 1.2 ns, and Rp c = 0.35 ns. Bince any additional componeat pairs have time
conut ntg shorter than R 6 ' and Bince we are intereated in gat'ng on the tubes for times
~1 ns, it appears that the given three-time-constant circuit way be adequate as an
approximation to tha ideal MCP-gate equivalent circulit.
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Electrical measurements

Thc driving-point impedance was measured by one or more of several methods for each of
six ITT tubes., Impedance data were obtained at various frequencies, Our intent was to
compare the measured impedance with that predicted by the model as a function of frequency.

Measurements were made at 1, 4, and 10 MHz with a Hewlett~Fackard model 4275A LCR meter.
A Hewlett~Packard model 3042A Automatic Network Analyzer was configured to measure
reflectance. The data were taken quasi-continucusly over the range from 1 to 13 MHz. The
devices were measured extensively at selected spot frequencies from 1 to 500 MHr with a
Hewlett-Packard model 419]JA rf Impedance Analyzer, It was found generally that the
measurements made below 10 MHz by the first two methods, and below 3 MHz by che third, were
too noisy to permit accurately cevaluating the esr., The data obtained by the three methods
generally agr2ed well. A sunmary of the data at 10 MHz is given in Table I.

TABLE I

Summary of Equivalent Series Resistance
and Capacitance Data on ITT Intensifier Tubes at 10 MHz

Intensifier

Serial

Numlker Cm Ca C, Ry, Rp Rg
748/1 29.7 31.7 31.3 64 54 64.3
787/1 -- 31.1 30.7 - 43 59.7
787/3 - 26.7 30.2 - 43.5 50.9
767/10 29.6 30.5 29 .8 4.1 10,7 10.1
788/7 - x 28 - -- <10 -
788/6 - 34.8 - - 12.5 -
Em' R, = data measured with LCR meter

Cp+ Ry = data measured with automatic network analyzer
C,, R, = data measured with rf impedance analyzer

The best data are thought to be those from the 4191A. Using this instrument, the
measured capacitance tor four of the tubes was 30.5 t 0,8 pF, The small spread verifies
that the dcvice dimensions vary little in manufacturing; the tested tuhes came from two
different batches.

The¢ me-sured esr varies greatly among tibes, Independent turn-on measurements® show
tha: thocte with the lowest esr tend to turn on fastest, We have so far been unable to
ditsctly relate the measured e€sc to the calculated value. The idea) model shows a constant
esr in the region below the first breakpoint. Fxperimentally, for some devices, the eur is
constant over - wide frequency range below the first calculated bireakpoint, For other, it
is inversely proportional to fregquency. Several facturs could contribute to this and other
observed anomalijes. First, we know that the photocathode resistivity varies among
intensifiers for several reasons. Second, the measured esr includes contributions from the
parallel ac-leakage repistance and other parasitics not included in che model, such as
stray capacitance and lead inductance, Third, it may be necessary to include the effects
of distributed inductance to account fully for the obgerved esr as well as for the turn-on
anomalies discussed earlier.

“he esr for five intenfisiera is plotted {in Fig 11]. ir several cases the esr s
pcoportional to about f7i-<, The relationship would be £~ for a purely resistive leakage
in parallel with the tube. Such a leakaje would have to have a value of 4.6 kit to agree
with typical neasured values of esr, whereas we eantimate the low-freguency leakage
resistance to be 300 M.,

The broadband data obtained with the r{f impedance analyzer show additional effects that
are not accounted for by the idealized model, Fiyure 12 is a plot of the magnitude of the
impedance as & function o' freguency for a tube exhibiting conetant esr below the first
breakpoint. A serles resonance occurs at 175 MHz., 1Its effect over & broad range of
frequencies masks evidence, if there im any, of the breakpoint that should occur at =~ 47
Miiz {f the estimated p_  is the vorrect value. The geriews resonance i{s caused partly by the
lead inductance rononaging with the device capacitance, The required inductance le 27 nH,
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The estimated maximum lead inductance, given the physical layout and dimensions, is about
16 nH. The proposed refinements to the model will rave to account for this effect.

There is & small parallel resonance at about 350 MHz. It is caused by the
aforementioned inductance resonating with the atray capacitance.
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Fig. 11, Measured equivalent series
resistance for five intensifier tubes.
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Fig. 12. Amplitude of thc impedance vs
frequency for one intensifier tube.
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